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Abstract

This paper describes a process for the radiometric calibration of gray scale images and linear
transformations of gray scale images. We begin by defining radiometric calibration and show
that it can be posed as a linear least squares problem. We then consider radiometric calibration
using linear transformations of images. When the transform coefficients are real valued we
show that the calibration problem is still a linear least squares problem. When the transform
coefficients are complex valued the calibration problem is a rather simple non-linear least
squares problem. We briefly discuss existing optimization software for solving both linear
and non-linear least squares problems.
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1 Radiometric Calibration

It is well known that there is often a difference between the actual intensity of incident radiation
and the intensity measured by a detector. This difference is due to nonlinearity of the detector
response, and noise associated with the detection mechanism. This means that the relationship
between measured and actual intensity is often non-linear. In the absence of proper detector
characterization, the relationship is also unknown.

In this paper we consider a portion of the process involved in comparing two images. Often,
we want image comparison to be invariant to intensity differences between the two images. For
example if we have two images of the same object, but all the intensities in one image are twice
those in the other image, we often want to say that these images are identical. Unfortunately,
the relationship between the intensities of images is often non-linear and usually unknown. We
call the process of calibrating two images the radiometric calibration problem.

2 Problem Formulation

In this work we define an image to be a set I = {(v, (i, j)) : v ∈ {0, 1, . . . , 255}, i =
1, 2, . . . , P, j = 1, 2, . . . , Q}. The pair (v, (i, j)) is a pixel where v is the value and the
pair (i, j) is the location. As a shorthand notation, we denote vI(i, j) as the value v of the pixel
at location (i, j) in image I. All images considered in this work are gray scale, as seen from
the definition v ∈ {0, 1, . . . , 255}. We assume we are given two images of the same size P ×Q,
denoted Is and Im.

One way to calibrate the images Is and Im is as follows. Consider all pixels in image Im with
value v = k and construct the set of locations LIm(k) defined by LI(k) = {(i, j) : vI(i, j) = k}.
Clearly LI(k) is the set of all pixel locations in image I which have pixel value k. For all pixels
in LIm(k) find a new pixel value φk such that the sum of the squared difference between φk

and the pixel values at locations LIm(k) in image Is is minimized. Repeat this procedure for
all pixel values in image Im. This problem can formally be written as

φ̂ = arg min
φ

255∑
k=0

∑
(i,j)∈LIm (k)

(
vIs(i, j)− φk

)2
, (1)

where φ is a vector whose kth element is φk and vIs(i, j) is the value of the pixel at location
(i, j) in image Is. This problem can be rewritten in the standard form for a linear least squares
problem by introducing the following notation. Define the image matrix M I as a P ×Q matrix
of integers in {0, 1, . . . , 255} such that [M I ]ij = vI(i, j). Define the image vector mI as a P Q
vector of integers in {0, 1, . . . , 255} formed by row ordering M I . Define BI as a P Q × 256
matrix of binary values in {0, 1} such that row l = (Q− 1)i + j contains a 1 in column vI(i, j)
and a 0 in all other columns. Using this notation, Equation (1) can be rewritten as

φ̂ = arg min
φ

〈 (
mIs −BImφ

)
,
(
mIs −BImφ

) 〉
,

= arg min
φ

(
φ

ᵀ
B

ᵀ
Im

BImφ− 2 m
ᵀ
Is

BImφ + m
ᵀ
Is

mIs

)
,

(2)
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where 〈v,v 〉 is the inner product of two vectors. As an aside, recall that A
ᵀ
A has the prop-

erties: it is real valued, square, symmetric, positive semi-definite, and has the same nullspace
as A. Recall that the rank of A equals the number of linearly independent rows which equals
the number of linearly independent columns. Also the dimension of the null space of A is the
number of columns minus the rank. Furthermore if A is full rank then (Aᵀ

A)−1 exists and
the linear least squares problem has a unique solution. Clearly the rank r of BIm is equal to
the number of different pixel values appearing in image Im, so r ≤ 256. The matrix BIm can
always be made full rank by removing all columns bk such that bk = 0. We must also remove
the corresponding elements φk from φ. This means that Equation (2) always has a unique
solution.

Suppose that we have a real valued linear transformation of the form

tI(k, l) =
P∑

i=1

Q∑
j=1

ck,l(i, j) vI(i, j), k = 1, . . . , R ≤ P, l = 1, . . . S ≤ Q, (3)

where ck,l(i, j) are the real valued coefficients of the transform. The transform calibration prob-
lem is to find a set of pixels values φ such that the squared difference between the transformed
images is minimized, in other words

φ̂ = arg min
φ

R∑
k=1

S∑
l=1

(
tIs(k, l)− tBImφ(k, l)

)2
. (4)

Define Ck,l as a P ×Q matrix of transform coefficients for fixed k and l and cd(k, l) as a P Q
vector formed by row ordering Ck,l. Define T as an R S × P Q matrix whose dth row is the
vector cd(k, l)ᵀ. Using this notation Equation (4) can be rewritten as

φ̂ = arg min
φ

〈
T

(
mIs −BImφ

)
,T

(
mIs −BImφ

) 〉
,

= arg min
φ

(
φ

ᵀ
B

ᵀ
Im

T
ᵀ
TBImφ− 2 m

ᵀ
Is

T
ᵀ
TBImφ + m

ᵀ
Is

T
ᵀ
TmIs

)
.

(5)

The problem in Equation (5) is also a standard linear least squares problem. Note that we can
use two different transformations T Is and T Im for the two images and still have the linear least
squares problem

φ̂ = arg min
φ

〈 (
T IsmIs − T ImBImφ

)
,
(
T IsmIs − T ImBImφ

) 〉
. (6)

Consider the properties of the solution for Equations (5) and (6). Let A = T BIm , which is an
R S× 256 matrix. If the columns of A are linearly independent, then Equation (5) (or (6)) has
a unique solution. Note that the columns of A can not be linearly independent if R S < 256. If
the columns of A are not linearly independent, then there are an infinite number of solutions
to Equation (5) (or (6)). Specifically, given a particular solution φ̂ to Equation (5) (or (6)),
the sum of φ̂ and any element in the nullspace of A is also a solution. Recall that the nullspace
of A consists of all φ such that A φ = 0.

Suppose that we have a complex valued linear transformation of the form

t̄I(k, l) =
P∑

i=1

Q∑
j=1

c̄k,l(i, j) vI(i, j), k = 1, . . . , R ≤ P, l = 1, . . . S ≤ Q, (7)
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where c̄k,l(i, j) are the complex valued coefficients of the transform. The transform calibra-
tion problem is to find a set of pixels values φ such that the squared difference between the
magnitudes of transformed images is minimized. This problem can be written

φ̂ = arg min
φ

R∑
k=1

S∑
l=1

(∣∣t̄Is(k, l)
∣∣− ∣∣t̄BImφ(k, l)

∣∣)2
. (8)

where
∣∣t̄I(k, l)

∣∣ =
√

t̄I(k, l) t̄∗I(k, l) is the magnitude of t̄I(k, l) and t̄∗I(k, l) is the complex con-

jugate of t̄I(k, l). Therefore
∣∣t̄I(k, l)

∣∣ can be written as

∣∣t̄I(k, l)
∣∣ =

√√√√ P∑
i=1

Q∑
j=1

c̄k,l(i, j) c̄∗k,l(i, j) v2
I (i, j) (9)

Making use of our previous notation, Equation (8) can be rewritten as

φ̂ = arg min
φ

〈 (√
T̄ ◦ T̄

∗
m2

Is
−

√
T̄ ◦ T̄

∗(BIm
φ)2

)
,
(√

T̄ ◦ T̄
∗
m2

Is
−

√
T̄ ◦ T̄

∗(BIm
φ)2

) 〉
, (10)

where the Schur product is [A◦B]ij = [A]ij [B]ij , A∗ is the complex conjugate of A, the square
of a vector is v2 = (v2

1 v2
2 · · · v2

k), and the square root of a vector is
√

v = (
√

v1
√

v2 · · · √vk).
Note that Equation (10) is a least squares problem, but it is not linear in φ. Recall that each
row of BIm contains a single 1 and the remaining entries are all 0. Therefore [b0 φ0]i + · · · +
[b255 φ255]i = φk for some k ∈ {0, . . . , 255} and for all i = 1, . . . , P Q, where bl is the lth column
of B. This implies that (Bφ)2 = B(φ)2.

3 Solution Methods

The calibration problems defined by Equations (2), (5), and (6) are linear least squares prob-
lems. The algorithm LSQR developed by Paige and Saunders (1982) has been shown in practice
to solve linear least squares problems both quickly and accurately. Specifically the algorithm
solves the damped least squares problem minx ‖b−A x‖2

2 + ‖λx‖2
2 where A has m rows and n

columns and λ ≥ 0. LSQR is a variant of the well known conjugate gradient (CG) algorithm
based on a bidiagonalization procedure developed by Golob and Kahan. It generates a sequence

of approximate solutions {xk} such that the residual norm ‖rk‖2 =
√
‖b−A xk‖2

2 + ‖λxk‖2
2

decreases monotonically. Analytically LSQR generates the same sequence {xk} as CG, but
LSQR is numerically more reliable than CG. LSQR incorporates reliable stopping criteria and
computes estimates of x, ‖x‖2, r, ‖r‖2,

∥∥A
ᵀ
r
∥∥

2
, the Frobenius norm ‖A‖F , the condition num-

ber of A, the projection A x, and the standard errors s2
i =

(
‖r‖2

2 / max((m−n), 1)
)
[(Aᵀ

A)−1]ii
where i = 1, . . . , n.

The calibration problem defined by Equation (10) is a nonlinear least squares problem. The
standard form for nonlinear least squares problems is

min
x

〈 r(x), r(x) 〉 . (11)
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Equation (10) can be expressed in this form by defining b =
√

T̄ ◦ T̄
∗
m2

Is
, A = (T̄ ◦ T̄

∗)BIm

and x = φ. Using this notation, the residual is r = b −
√

Ax2 and the Jacobian is J =
(∇r1 ∇r2 · · · ∇rR S). Specifically the elements of the Jacobian are

Jij =
∂rj

∂xi
=

−aji xi√
aj1 x2

1 + aj2 x2
2 + · · ·+ aj256 x2

256

i = 1, . . . , 256, j = 1, . . . R S. (12)

The Levenberg-Marquardt (LM) algorithm (Levenberg (1944) and Marquardt (1963)) is one
traditional method for solving non-linear least squares problems. LM is a variant of the well
known Gauss-Newton algorithm in which Equation (11) is approximated by a series of quadratic
problems

min
δk

δ
ᵀ
k J

ᵀ
k Jk δk + 2 r

ᵀ
k J

ᵀ
k δk

subject to

δ
ᵀ
k δk ≤ η2

k ,

(13)

where δk is found by solving the regularized linear system(
J

ᵀ
k Jk + λ I

)
δk = −Jk rk , (14)

for λ ≥ 0 and xk+1 = xk +δk. An excellent implementation of LM due to Moré (1978) appears
in MINPACK. Another algorithm that has achieved good results in practice on non-linear least
squares problems is NL2SOL by Dennis, Gay, and Welsch (1981).
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